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Department of Civil Engineering, University College of Swansea, Singleton Park, Swansea, SA2 8PP, U.K. 

SUMMARY 

The technique of dampers is now widely used in the numerical analysis of unbounded problems. The 
dampers are used to absorb the outgoing waves. This paper will consider in detail the best formulations 
of damper methods. Examples will be given showing the effectiveness of three different dampers, in 
two dimensional and three dimensional models. The geometries considered are circular and elliptical 
cylinders, spheres and ellipsoids. The results indicate that dampers are indeed very effective, particu- 
larly those of higher order, which have recently been developed by Bayliss et al.”’ and others. 

1. INTRODUCTION 

The types of wave problem for which these dampers can be directly used are exterior scalar 
wave problems. Important examples of these include 

(i) surface water waves-wave forces on offshore structures, diffraction and refraction of 

(ii) pressure waves in fluids-depth charge problems, sonar, fluid-structure interaction 
(iii) pressure waves in elastic media-earthquakes and vibration 
(iv) electromagnetic waves-aerials, waveguides. 

waves in the coastal zone 

The two examples considered in the remainder of the paper are linear free surface waves in 
two dimensions and compression waves in three dimensions. Such waves are governed by the 
Helmholtz equation 

V2c$ + k2c$ = 0 (1) 

where c$ is the scalar wave variable, and k is the wave number, given by the frequency, w, 
divided by the wave speed, c. In water of constant depth, h, with an acceleration due to 
gravity, g, the velocity of the surface wave, c is (gh)1’2. The velocity of compressive waves is 
c = (K/p)”*, where K is the bulk modulus and p is the density. The technique of dampers is 
of course applicable to vector wave propagation, but this will not be considered here. 

2. EXTERIOR WAVE PROBLEM 

Waves are considered whose wavelength is long compared with the fluid depth and whose 
amplitude is small. Assuming that the fluid is incompressible and motion is irrotational, the 
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wave equation governing the flow can be derived from the continuity equation and the 
momentum equations in the form 

A more general theory which includes long waves and short waves has been developed by 
Berkhoff3 and has been implemented in the finite element context by Bettess and Zien- 
k i e ~ i c z . ~  Berkhoffs wave expression corresponding to equation (1) is 

where c is the wave speed and c, is the group velocity. As the theme of this paper is to 
compare the accuracy of these dampers, the simple constant depth model expressed by 
equation (1) is adopted. In the case of constant depth equation (1) reduces to 

where k = w/(gh)1’2 is wave number and w is angular frequency. In the above, it is assumed 
that velocity potential is periodic, e.g. 

+(x, Y, 2, t )  = &(x, Y, Z W i o t  (4) 

Thus wave motion is generally described by the Helmholtz equation. When the scattering 
of surface waves due to circular or elliptical cylinders is calculated, equation (3)  will have to 
be solved. 

On the other hand, in three dimensional problems the scattering of waves, such as sound 
waves or compressive waves, diffracted by a sphere or ellipsoid in homogeneous infinite 
domains is dealt with. Then the basic equation to be solved is 

The boundary condition at infinity will be dealt with in the following section. 

3. RADIATION BOUNDARY CONDITION 

The boundary condition at infinity is required in order to solve potential problems described 
by the Helmholtz equation in an infinite domain. This condition is the so-called Sommer- 
felds radiation ~ondi t ion.~ The uniqueness of the solution satisfying this condition has been 
proved for periodic problems.6 

Sommerfeld’s radiation condition corresponding to equations (3) or ( 5 )  can be expressed 
as 

or 
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where r is the distance from any fixed point and h is the number of dimensions, and O(f(r)) 
means a quantity of order not greater than f(r) for large r. However it is difficult to 
incorporate equations (6) or (7) directly into FEM programs, since they are in the form of a 
limit. Here we describe three forms of the radiation condition corresponding to the number 
of dimensions involved. This explanation should clarify the property of each damper. 

3.1. One dimensional problems 

the distance from a singular point. Now the potential 4 can be in general written as 
The fundamental solution for the one dimension Helmholtz equation is exp (ikr) where r is 

4 = F,(r - ct) + Gl(r + ct)  (8) 

In the equation above F1 stands for outgoing waves and GI for incoming ones. As only the 
outgoing waves should satisfy the radiation condition, G1 is now required to vanish. By 
eliminating Fl, we obtain 

a+ la6 -+--=o 
ar c at 

For periodic motion this condition becomes 

(9) 

This boundary condition can be easily incorporated in FEM programs as a plane damper, as 
was shown by Zienkiewicz and Newton.’ 

3.2. Two dimensional problems 

For two dimensional problems, the derivation is more complicated than for one dimen- 
sional problems. This is because the two dimensional fundamental solution is the Hankel 
function and the potential 4 cannot be written strictly in such a form as equation (8). But the 
Hankel function of the first kind of order zero. HA(kr) can be approximately expressed for 
large r as follows: 

Hi( kr) - exp (i( kr - n/4)) ( - = c (:)1’2eikr 

where C is a constant independent of r. When the periodic term exp(-iot) is taken into 
account, for large r the potential 4 can be written as 

4 = F2( r - ct)/(  r )  ‘I2 (12) 

In the same way as for the one dimensional problems, the following simple radiation 
conditions can be obtained. 

a+ 1 la4 - + - 4 + - - = o  
ar 2r c at 

or 
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Equations (13) and (14) describe the radiation conditions for the outgoing waves at infinity 
which progress uniformly in any direction. We will call the damper formulated by equation 
(14) the cylindrical damper. 

3.3. Three dimensional problems 

In the same way as in the one dimensional problem the potential 4 can be generally 
written as 

4 = F3(r - ct)/r (15) 

and the radiation condition for three dimensional problems is 

a4 1 la4 -+-4+--=o 
d r  r c at 

or 

Equation (17) is derived under the assumption that outgoing waves propagate uniformly in 
all directions. The damper described by equation (17) is here called a spherical damper. 

These boundary conditions described above should be imposed at infinity. However these 
dampers are placed not at infinity but at a finite distance. One of the main purposes is 
therefore the comparison of the accuracy when each damper element is set up at a finite 
distance from distrubance such as a cylinder. 

4. HIGH ORDER DAMPER THEORY 

Recently a theory has been developed by Bayliss. Gunzberger and Turkel for higher order 
damper boundary conditions.' For completeness the entire necessary theory will be outlined 
here. The first essential step is to prove that any wave can be expressed in series form, 
following Atkinson6 and Wilcox.8 Next the series form is used to obtain a series of operators 
which then define a set of dampers of increasing order.',' The proofs are different for two 
and three dimensions. As the three dimensional proof is essentially simpler and more natural 
it will be stated first. 

Three dimensional damper theory 

The starting point is Green's second identity. 

(uV'V - v V ~ U )  d R =  h 
where u and v are any two functions, which are defined in the unbounded domain, a, 
exterior to the surface S ,  and which satisfy the following conditions as the radius, r, tends to 
infinity 

are bounded in absolute value for sufficiently large radius, r. 
Let u = exp ( ikr) /r ,  the Green's function for the Helmholtz equation in three dimensions, 

and consider the geometry shown in Figure 1. The domain R is unbounded, and the 
boundary S consists of two parts, S1, the surface of a sphere of radius r = a, and S2, the 
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Figure 1. Geometry 

surface of a sphere of radius E, centred about the pole, P. v is taken to be the solution of the 
Helmholtz equation throughout a. Now the volume integral of equation (18) reduces to 
zero, and so 

where R is the distance from the pole to a point Q on the surface S,. 

becomes 
Now let the sphere of radius E be shrunk to a point. Clearly ds = 4.rre2, and the S ,  term 

So now 

We will expand 
respectively. Then 

v about a fixed point X. Let r, p, 6 denote PX, XQ and LPXQ, 

x = r-1 

R = (r2-2rp cos 6 + p2)l/’ 

1 
= - {(I - 2xp cos 6 + x z p y -  1) 

X 

r/R = (1 - 2xp cos 6 + x2p2)-1/2 

ik - 1/R = ik -x( l -2xp cos 6 +x2p2)-7’2 
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Hence 

eikR eikr 

R/T may be expanded in a power series because the right-hand side is an analytic 

function of x in the region 12xp cos 6 - x2p21 < 1. Assuming that v has continuous second 

derivatives on S ,  
. pe1re.1-1 av . 

- IS also analytic. It follows that the following integral may 
an 

be expanded in a power series. 
eikr -1 eikR m Ll [-] dv ds = ,$6 CAX" = cAr-" 

R an n =O 

The same result holds for 

Therefore v can be expanded in a series form as follows: 

It is proved that the solution to the three dimensional Helmholtz equation can be written in 
the expansion form. 

Next we will obtain a sequence of boundary conditions which annihilate the first rn terms 
in the asymptotic expansion. The solution 4 to the three dimensional Helmholtz equation 
can be expressed as 

The operator L 

is defined. When equation (27) is multiplied by r", equation (29) is obtained. 
m m 

rm+ = eikr C rm-ifi(e, 4) + eikr C rrn-jfi(O, 4) 
j = l  j = m + l  

Applying the operator L" to both sides of equation (29), the first sum of the right-hand side 
of equation (29) obviously becomes zero. Hence 

L"(r"4) = O(r-"-') (30) 

Equation (30) shows that the operator L" can annihilate the first m terms in r"4. 
The operator acting only on 4 should be obtained. Now we separate the operator L into 
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the constant part L1 and the differential part Lz as follows 

L, = -ik 

a 
L2 =- 

ar 

and write L"(r"4) explicitly when m = 1 and m = 2. 
m = l  

L(r4) = (Ll+ L2)(r4) 
= L1r4 + rLz4 + 4L2r 

= a 1  + L2)4 + 4 
=rL+++ 

or 

m=2 

(32) 

(33) 

or 

On the analogy of equations (33) and (35) the new operator B, is defined recursively as 
follows. 

m 

B, = n [I,+"-'] r 
i=1 

= fi [ -ik +;+r 
j = l  

It is easy to prove that B, defined above annihilates the first m terms in the expansion (26). 
It then follows that 

Bm4 = O(r-Zm-1) (37) 

Bm4 = 0 (38) 

Thus the boundary condition 

matches the solution to the first m terms in equation (27) and it is clear that the more 
accurate results can be obtained by applying the higher order boundary conditions. 

One difficulty is that the infinite series of operators in equation (36) generates higher and 
higher derivatives with respect to r. This leads to difficulties in a finite element model. 
However the order of the highest derivative can be reduced by using the Helmholtz equation 
itself. Now the following boundary condition is considered: 

B24 = 0 (39) 
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The B2 operator is 

K. BANDO, P. BETWSS AND C. EMSON 

Helmholtz’s equation may be written in spherical co-ordinates (r,  8, 6) as 

-+--+-..--.--+--+-- a2+ 2 a 4  cos 8 a+ 1 a2+ 1 az++k24=0 
ar2 r a r  r2sin8 a8 r2a02 r2sin28 as2 

!!?? can be eliminated from equations (40) and (41), so that 
ar2 

1 a2+ cos 8 a4 1 a24 
r2 do2 r2 sin 8 a8 r2 sin2 8 da2 - 

For simplicity only axisymmetric problems will be dealt with, and the potential 4 is assumed 
to be independent of the 8 co-ordinate. Then equation (42) is reduced to 

Further, the artificial surface on which the boundary condition (39) is imposed is assumed to 
be spherical and the distance along the boundary s is introduced: 

s = r8 (44) 
Equation (43) can be rewritten as 

or 

a24 cos 8 a4 
ar as rsin 8 as 
-+ ff4 - p 2- p - - -0  - 84 

where 

1 p =- 
2a! 

Now for the element formulation, the boundary integral 
2- 
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is used. Considering that # is independent of 6, equation (47) is reduced to 

2m 

A = jl [E&2+:($y]r sin 8 dS ds 

= j [ E & 2 + g e ) 2 ] 2 7 i r  sin 8 ds 

0 

r 
= J F d s  

The variation of F generates the boundary condition.' 

aF a 
[ F ]  * -a& as a(aF/as) 

= O  (49) 
34 The term - arises as the natural boundary condition. 
ar  

Equation (48) can be easily incorporated into E M  programs as higher order damper 
elements. Note that the first order operator B,  is identical to the spherical damper defined in 
equation (17). 

Two dimensional damper 

For two dimensions the convergent expansion is given by Karp" as follows: 

where Ho and HI are the Hankel functions of the first kind of orders 0 and 1. However these 
are not easy to work with. So another series, which is asymptotically true for large r, is 
adopted. 

This equation corresponds to equation (27) for three dimensions. This expansion leads to a 
series of operators in the same way as in three dimensions. 

- ik] 
a (2 j -3/2) 

Bm = n [-+ 
j=l ar r 

Now the boundary condition specified by operator B2 is considered: 

B2& = 0 (54) 

If the boundary is strictly circular, equation (54) can be expressed as follows: 
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where 
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a = [ ~ - 2 k ~ + ~ ] / E + 2 i k ]  3 
r 

p = 1/[:+2ik] 

Therefore for an element implementation, the line integral 

is obtained.'?'' The two dimensional higher order damper discussed in this paper is based on 
equation (56). It is important that the first order operator B, coincides with the cylindrical 
damper described by equation (1 1). 

5. NUMERICAL RESULTS 

It is interesting to estimate the errors of these dampers in different parameter ranges. 
1. The error for fixed k and m as the position of the artificial surface, i.e. rl, varies. 
2. The error for fixed k and rl as the order of the boundary operator m increases. 
3 .  The error for fixed rl and m as the wave number, k increases. 

In view of this, four problems were solved to check the accuracy and the behaviour of each 
damper. 

First the surface waves scattered by a cylinder standing in shallow water with constant 
depth were analysed and the three items above were investigated (circular cylinder problem). 
Further, in order to compare the effectiveness of each damper the following three problems 
were solved: surface waves hitting an elliptical cylinder (elliptical cylinder problem), and 
waves scattered by a sphere or an ellipsoid in a three dimensional homogeneous domain 
(sphere and ellipsoid problems, respectively). The radii of the cylinders and spheres consi- 
dered here are 1.0 and the major and the minor axis lengths of the elliptical cylinder and the 
ellipsoid are 2.0 and 1-0, respectively. As the basic solution, the analytical solution12 is used 
in the cylinder and sphere problems, the numerical solution by using fine finite elements and 
boundary integrals is adopted for the elliptical cylinder problem and the numerical solution 
by using fine finite elements and infinite elements for the ellipsoid problem. All three 
dimensional examples were analysed as axisymmetric problems. 

5.1. Circular cylinder problem 

Figures 2-4 show the numerical results when the wave number k varies. The real and 
imaginary parts of the wave elevation around a cylinder are illustrated. The relative error 
around a cylinder, which is defined by (lq,l-lqal)/lqal where qn, qa are the numerical and 
analytical values respectively, are shown in Table I. The finite element mesh used is shown in 
Figure 5(i). It is seen that the results by using higher order dampers are quite close to 
theoretical values in any case and the errors of plane dampers are larger than the others. 

Next, examples were calculated in which the wave number is considered to be 1-0 and the 
outer radius and the number of elements in the radial direction are changed. The meshes 
used when the outer radii are 1.5, 4.0 and 7.0 are shown in Figure 5. Table I1 and Figure 6 
show the relative errors around a cylinder produced using each damper. It is seen that the 
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Table I. Relative (percentage) errors in circular cylinder problem ( r  = 1.5, n = 1) 

Plane - 12.1 
0 Cylindrical -3.0 

Second order -1.1 
Plane 3.8 

90 Cylindrical -0.3 

Second order -0.5 
Plane 28.6 

180 Cylindrical 4.8 
Second order 0.5 

-31.3 -34.8 
-12.4 -16.9 
-1.5 0.3 
10.0 1-8 
-1.0 -3.7 

0.3 0.7 
13.0 -6.0 
1.1 0.6 

-0-6 0-0 

-24.8 
-13.8 
-2.3 
-4.8 

0.2 

0.1 
-7.7 
-2.0 
-0-1 

16.2 
12.5 
-4.6 

3-6 
7. 

0.9 
0.6 

-1.3 
-1.1 

k =wave number 
r = outer radius 
n =the number of elements in the radial direction 
0 = angle around a cylinder in degrees 

Table 11. Relative (percentage) errors in circular cylinder problem ( K  = 1-0) 

r=2.0 r=2.5 r=3.0 r=3.5 r=4.0 r=4.5 r=5.0 r = 5 . 5  r=6.0 r=7.0 
6 Damper (n=1) (n=2) (n=3) (n=4) ( n = 5 )  (n=6) (n=7) (n=8) (n=9)  (n=lO)(n=12) 

Plane 
0 Cylindrical 

Second order 

Plane 
90 Cylindrical 

Second order 
Plane 

180 Cylindrical 
Second order 

-34.8 -9.8 2.2 6.5 5.2 1.2 -2.5 -3.1 -1.0 1.1 1.1 
-16.9 -5-1 -0.3 3-0 1.9 0.0 -1-1 -1.0 -0.2 0.6 0.1 

0.3 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.8 -2.9 -6.0 -5.3 -0.6 3.5 3.5 3.6 1.1 -1.8 -2.7 
-3.7 -1.4 -0.6 -0.3 -0.1 0.3 0.4 0.2 -0.1 -0.2 0.1 

0.7 0.1 -0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 

-6.0 -8.3 -4.5 1.8 6.2 4.6 4.6 -0.8 -4.8 -3.5 -0.3 
0.6 0.7 1.0 0.6 -0.1 -0.1 -0.1 0.0 0.2 0.2 -0.2 
0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 111. Relative (percentage) errors in circular cylinder problem (k = 1.0, r = 7.0) 

e Damper n = 2  n = 3  n = 4  n = 5  n = 6  n=12  

Plane 
0 Cylindrical 

Second order 
Plane 

Second order 
Plane 

Second order 

90 Cylindrical 

180 Cylindrical 

5.6 2.2 
4.5 1.2 
4-3 1.0 

-8.4 -0.4 
-8.5 -1.5 
-8.4 -1.5 
-0.3 4.2 
-3.3 0.7 
-5.4 0.9 

1.5 
0.5 
0.4 
0.5 

-0.7 
-0.8 

3.7 
0.2 
0.3 

1.3 1.2 
0.3 0.2 
0-2 0.1 
0.9 1.1 

-0.4 -0.2 
-0.4 -0.2 

3.5 3.4 
0.0 -0.1 
0.2 0.1 

1-1 
0.1 
0.0 
1.3 
0.1 
0.0 
3.3 

-0-2 
0.0 
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10.0 

8 .O 

6.0 

4.0 

- 
s 

20 I 

v) 
K 
0 
CL 

w 
CL 0.0 

w ' - 2.0 r 
4 
-I 
w 
CL 

- 4.1 

- 6.1 

- 8.C 

-1O.C 

-16.1 

- 3 4.c 

- 351 

incident waves 
-c-- 

-c-- 
-c-- 
-c-- 

Plane damper 

_ _ _ _ _ _ _ _  Cylindrical damper 

_ _  Second order damper 

1.1t1-1.1tl 
1.13 Figure 6 .  Comparison of relative errors for various outer radii ( k  = 1.0). Relative error = ~ 

results converge in an oscillatory way. The second order dampers can give very good 
accuracy even near the cylinder. If the allowable error is assumed to be 1 per cent, the 
number of elements in the radial direction is required to be l(rout = 1-5) for higher order 
dampers, 8(rOut = 5.0) for cylindrical dampers and more than 12 for plane dampers. Thus the 
outer boundary, when first order dampers (cylindrical dampers) are used, should be set up 
about 3 times further out than in second order dampers. It is clear that second order 
dampers are very effective and can reduce program size and computational cost. 

The relative errors are shown in Table I11 when the wave number and outer radius of the 
FEM region are fixed and the fineness of the discretization varies. It is natural that the 
results should improve as the number of the elements increases. The coarse mesh, n = 1, 
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which is considered as the number of elements per wavelength, always gives meaningless 
results and, even in the case of n = 2, the agreement is not good and the higher order effect 
does not come out. On the other hand, when the fine mesh, n = 12, is used, the agreement 
between theory and numerical results by cylindrical or second order dampers is extremely 
good. These facts indicate that even when the outer radius is far from a structure, we should 
divide one wavelength into 4 or more elements to obtain accurate results and when the outer 
radius is placed at a distance of one wavelength from a structure and the fine mesh is used, 
the difference between first and second order dampers vanishes. 

5.2. Elliptical cylinder problem 

It was felt that a test in which the obstacle was not itself cylindrical would show whether 
the improvement in results using cylindrical and higher order dampers was a real improve- 
ment or partly due to the shape of the obstacle. 

Using two kinds of meshes shown in Figure 7, the elliptical problem was solved. Table IV 
shows the relative errors around an elliptical cylinder. There is no difference due to the angle of 
incident waves in any dampers' results. The numerical values by higher order dampers are 
extremely close to the basic ones in both cases, n = 1 and n = 6. In the case n = 6, the 
agreement between numerical values by cylindrical dampers and basic ones is good and the 
errors produced using plane dampers are larger. Thus the results from the elliptical cylinder 
problem are quite similar to the results from the cylindrical problem. 

5.3. Sphere problem 

Waves scattered by a sphere in an infinite homogeneous domain were calculated using the 
meshes shown in Figure 5 (rout= 1.5, 4-0, 7-0). The wave elevation along the surface of a 
sphere is plotted in Figures 8 and 9 and the relative errors are shown in Table V. In the 
sphere problem we have the following results which are similar to two dimensional results. 
Higher order dampers give quite good results and can reduce the number of finite elements, 
and the results by plane dampers are rather poorer. 

5.4. Ellipsoid problem 

The final problem is the same as the sphere problem except that an ellipsoid is used 
instead of a sphere. The numerical results are given in Table VI. As in the above problems, 
higher order dampers give excellent results even when the outer boundary is placed close to 
the structure. 

6. CONCLUSION 

Some infinite potential problems described by the Helmholtz equation have been solved to 
evaluate the accuracy of four different kinds of dampers. Of these dampers, those developed 
by Bayliss et al. are expressed in a series form and can be considered as generalizations of 
dampers. For example their first order dampers coincide with cylindrical dampers in two 
dimensional problems and spherical ones in three dimensional problems. 

In this paper, four kinds of geometries were considered, i.e. circular and elliptical cylinders 
and spheres and ellipsoids. In all geometries the results were consistent. Cylindrical, 
spherical and higher order dampers are accurate and the results obtained by higher order 
dampers are close to theoretical values. Second order dampers typically require less than half 
the number of finite elements to keep the same level of accuracy as first order dampers. 
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Figure 7. Element meshes 

Numerical values tended to converge in an oscillatory manner as the outer radius increased. 
It was also found that it is usually necessary to divide one wavelength into 4 or more 
elements in order to obtain accurate results. Plane dampers, which are those most frequently 
used in practice, have the lowest accuracy. 

Thus it is clear that cylindrical, spherical and higher order dampers are very effective in 
point of the accuracy as well as programming and computational cost, and particularly the 
second order damper is one of the most effective techniques for the analysis of unbounded 
problems. The method of Bayliss et al. can be strongly recommended, particularly as its extra 



Table IV. Relative (percentage) errors in elliptical cylinder problem ( k  = 1.0) 

Angle a =0.0 Q = 45.0 Q = 90.0 
r = l . S  r=4.0 r = l . S  r=4.0 r = l . S  r=4.0 

e Damper ( n =  1) (n=6)  ( n =  1) (n=6) ( n = 1 )  (n=6)  

Plane -9.1 1.2 -2.5 0.9 2.5 2-6 
0 Cylindrical -5.9 -0.2 -3.3 -0.4 -0.1 0.0 

Second order 0.4 0.1 0.4 0.0 0.1 0.0 
Plane 2.4 2.6 -3.4 -4.2 -21.5 -0.6 

90 Cylindrical -0.2 0.0 -2.0 1.8 -8.4 1.6 
Second order 0.1 0.0 0.9 0.0 0.9 0.0 
Plane -3.8 2.7 -2.6 3.0 2.5 2.6 

180 Cylindrical 0.4 -0.1 0.0 0-0 -0.1 0.0 
Second order -0.1 0.0 -0.1 0.0 0.1 0.0 

Plane - - -10.3 4.8 -13.8 4.9 
270 Cylindrical - - -3.6 -0.2 -4.2 -0.3 

Second order - - 0.1 0.0 0-2 0.0 

a = angle of incident waves in degrees. 
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Figure 8. Comparison of wave diffraction by a sphere using three types of dampers ( k  = 1.0, rout = 1.5) 
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Figure 9. Comparison of wave diffraction by a sphere using three types of dampers (k = 1.0, rout = 4.0) 

Table V. Relative (percentage) errors in sphere problem (k = 
1.0) 

~ ~ 1 . 5  ~ = 4 . 0  ~ ~ 7 . 0  
8 Damper ( n = l )  ( n = 6 )  ( n =  12) 

Plane 

Second order 
Plane 

Second order 
Plane 

Second order 

0 Spherical 

90 Spherical 

180 Spherical 

-23-3 -0.7 -1.0 
-9.4 0.7 0.2 

0-2 -0-1 -0.1 
9.8 -0.1 -0.9 
0.0 0.0 0.0 
0-4 0.0 0.0 

-2.3 6.6 1.6 
-1.2 0.5 0.1 
-0-4 -0.1 -0.1 
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Table VI. Relative (percentage) errors in ellipsoid problem (k = 1.0) 

Angle (Y = 0.0 (Y = 90-0 
r =  1.5 r=4.0 r =  1-5 r=4.0 

8 Damper ( n = 1 )  (n=6)  ( n = 1 )  (n=6) 

Plane -5-2 -0.5 6.0 0.5 
0 Spherical -1.8 0.2 0.0 0.1 

Second order 0.1 0.0 0.1 0.1 
Plane 3.0 -0.4 13.5 0.6 

90 Spherical -0.1 0.0 -5.7 0-4 
Second order -0.1 0.0 0.1 0.1 
Plane 0.6 1.4 6.0 0.5 

180 Spherical -0.8 -0.9 0.0 0.1 
Second order -0.3 -0.1 0.1 0.1 
Plane - - 1.6 3.0 

270 Spherical - - -1.3 0.5 
Second order - - -0.1 -0.1 

computational expense is negligible. In view of the success of the second order dampers, it 
would appear to be worth while to investigate third and higher order versions, although this 
has obvious difficulties. It also might be feasible to develop two dimensional dampers which 
use the more theoretically correct Hankel functions. 
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